点击关注我的Telegram群组和微信公众号

MENU

Python Pandas DataFrame 速查表 2

2021 年 04 月 03 日 • 阅读: 1566 • 技术,教程

求平均数

  • mean()可以用于求平均数
JustTables = SalesData.loc[SalesData["Sub-Category"]=="Tables"]
RegJustTablesDiscount = JustTables[["Region", "Discount"]].groupby(by="Region").mean()
print(RegJustTablesDiscount)

输出结果:

         Discount
Region           
Central  0.262500
East     0.373750
South    0.222549
West     0.200000

复制DataFrame

  • copy()可以完整地复制一个DataFrame到一个新的变量中 (true copy)
JustTablesYear = JustTables.copy()

value_counts() 求重复值

  • value_counts() 可以筛选出列数据中有哪些不同的值,但和unique()不同的是,它还可以直接打印出每种值出现的次数
FrequentItems = SalesData["Customer Name"].value_counts()
print(FrequentItems.head(10))

输出结果:

William Brown        37
Paul Prost            34
John Lee            34
Matt Abelman        34
Edward Hooks        34
Seth Vernon            32
Jonathan Doherty    32
Chloris Kastensmidt     32
Arthur Prichep        31
Emily Phan            31
Name: Customer Name, dtype: int64

drop_duplicates() 去重复值

  • drop_duplicates() 可以一键去除列中的重复值
CustomerOrder = SalesData[["Customer Name", "Order Date"]].sort_values(by="Order Date", ascending = False)
CustomerOrderNoDup = CustomerOrder.drop_duplicates()

dt日期

  • .dt 可以有效地处理DataFrame中Datetime类别的数据,可用的接口非常多
JustTablesYear["Year"] = JustTablesYear["Order Date"].dt.year
print(JustTablesYear["Year"])
print("="*20)
Years = JustTablesYear["Year"].unique()

输出结果:

6       2016
37      2016
69      2016
82      2016
113     2016
        ... 
9844    2019
9885    2019
9899    2019
9950    2019
9966    2019
Name: Year, Length: 319, dtype: int64
====================
[2016 2017 2018 2019]
  • 在这里,我们在DataFrame中新建了一个列(默认在最后一列),名为Year。基于Order Date列的数据使用.dt.year来提取了订单的年份并写入了对应的Year列。uniquie()打印出了DataFrame中包含了2016~2019年的订单数据
  • 至此,我们就可以轻松地统计出各年的销售数据并有机会进行更高级的结果筛选
RegJustTablesYear = JustTablesYear[["Region", "Year", "Discount"]]
for year  in Years:
  OneYear = RegJustTablesYear.loc[RegJustTablesYear["Year"]==year]
  YearlyRegDiscount = OneYear.groupby(by="Region").mean()
  print("\n Regional table discounts for year"+ str(year))
  print(YearlyRegDiscount)
  print("*"*40)

输出结果:

 Regional table discounts for year2016
         Year  Discount
Region                 
Central  2016  0.205882
East     2016  0.368182
South    2016  0.250000
West     2016  0.240625
****************************************

 Regional table discounts for year2017
         Year  Discount
Region                 
Central  2017  0.292308
East     2017  0.373913
South    2017  0.270588
West     2017  0.178947
****************************************

 Regional table discounts for year2018
         Year  Discount
Region                 
Central  2018  0.326667
East     2018  0.380000
South    2018  0.113636
West     2018  0.208000
****************************************

 Regional table discounts for year2019
         Year  Discount
Region                 
Central  2019  0.207143
East     2019  0.373333
South    2019  0.218750
West     2019  0.166667
****************************************
  • 类似地,我们可以用两个for循环来合并统计三类数据
Years = JustTablesYear["Year"].unique()        # 合并独立不同的年份
Regions = JustTables["Region"].unique()        # 合并独立不同的销售地区
SegJustTablesYear = JustTablesYear[["Segment", "Year", "Discount", "Region"]]    # 筛选数据表
for year in Years:
  # 第一个for循环分别对每年的数据进行统计
  OneYear = SegJustTablesYear.loc[SegJustTablesYear["Year"]==year]
  NoYear = OneYear[["Segment", "Discount", "Region"]]
  for region in Regions:
    # 第二个for循环分别对每个销售地区的数据进行统计
    OneRegion = NoYear.loc[NoYear["Region"]==region]
    YearlySegRegDiscount = OneRegion.groupby(by="Segment").mean()    # 对各销售部门的折扣数据合并求平均数
    # 打印输出
    print("\n"+str(year)+" Table discounts by customer segment in the "+region+" region")
    print(YearlySegRegDiscount)
    print("*"*50)

输出结果(节选):

             Discount
Segment              
Consumer         0.32
Corporate        0.06
Home Office      0.00
**************************************************
2016 Table discounts by customer segment in the Central region
             Discount
Segment              
Consumer         0.32
Corporate        0.06
Home Office      0.00
**************************************************

2016 Table discounts by customer segment in the East region
             Discount
Segment              
Consumer     0.336364
Corporate    0.400000
Home Office  0.400000
**************************************************

2016 Table discounts by customer segment in the West region
             Discount
Segment              
Consumer     0.208333
Corporate    0.220000
Home Office  0.380000
**************************************************

2016 Table discounts by customer segment in the South region
           Discount
Segment            
Consumer   0.183333
Corporate  0.350000
**************************************************

2017 Table discounts by customer segment in the Central region
             Discount
Segment              
Consumer     0.293333
Corporate    0.320000
Home Office  0.266667
**************************************************

2017 Table discounts by customer segment in the East region
             Discount
Segment              
Consumer     0.371429
Corporate    0.362500
Home Office  0.387500
**************************************************
2016 Table discounts by customer segment in the East region
             Discount
Segment              
Consumer     0.336364
Corporate    0.400000
Home Office  0.400000
**************************************************
  • 类似地,

    • .dt.month将自动输出Datetime类数据的月份(int type, 1-12)
    • .dt.dayofyear 将输出日期是当年的第几天
    • dt.is_leap_year将输出日期所属年份是否为闰年 (bool type)
    • 和Python的Datetime库类似,pandas.dt有一个strftime可以将str字串符转化为NumPy数组形式的日期
最后编辑于: 2021 年 04 月 09 日
返回文章列表 文章二维码 打赏
本页链接的二维码
打赏二维码